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How the choice of shape and ensemble affect simulations of two-dimensional melting
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Nonequilibrium quenching in two-dimensional simulations from a solid or liquid to an interfacial-
hexatic regime demonstrates the sensitivity of the final results to the shape of the simulation box (final
size effect) and to the molecular dynamics ensemble used (constant density versus constant pressure).
Even for a small system of N = 1024 particles, under no circumstance is stabilization of the structure fac-
tor reached before some nanoseconds. This means that the results given by Naidoo et al. [Mol. Phys. 80,
1 (1993)] using hexatic structure boundaries are too small and pose the question of whether all the pub-
lished work on two-dimensional melting has used systems that are too small and simulation times that

are too short.

PACS number(s): 68.10.Jy, 05.70.Fh, 64.70.Kb

I. INTRODUCTION

The Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory [1] for two-dimensional (2D) melting
systems predicts a second-order (continuous) transition
proceeding in two stages: from the solid to the “hexatic”
phase (with bond-orientational order) and from the hexat-
ic phase to the isotropic liquid. Alternatively, there is the
first-order (discontinuous) transition theory, in which,
breaking abruptly its long-range order, the 2D solid melts
to the isotropic liquid with no intermediate phase. How-
ever, not only has neither theory been good enough to ex-
plain categorically 2D melting, but a curious paradox has
arisen from the results obtained up to now: while many
experimental results seem to confirm the KTHNY
theory, most simulation results seem to confirm the first-
order transition [2]. The factors that possibly cause this
apparent discrepancy could come from different sources
such as the specific physical properties of the system un-
der study, the computational technique used to simulate
the systems, the size and evolution time of the systems,
etc. The influence of some of these factors on the 2D
melting behavior has recently been studied [3] for soft-
disk systems and long molecular dynamics (MD) simula-
tion runs. The main conclusion was that the final results
are strongly dependent on the boundary and initial condi-
tions of the systems being simulated. The same con-
clusion can be inferred for hard-disk systems [4] and
Lennard-Jones (LJ) systems [5], since identical (or closely
related) systems have led to very different results.

In the present paper we quench 2D systems from the
bulk (liquid and solid) states into the region of phase
change and measure the nonequilibrium relaxation times.
The growth and disappearance of order are measured by
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the change in the structure factor S(k), and especially
the peak corresponding to the triangular solid ordering is
found to be a sensitive measure for phase changes in the
systems. The two-dimensional “melting” is known to ex-
hibit hysteresis, a property often associated with a first-
order phase transition, but by quenching the system from
the bulk phases into the same state point in the “inter-
phase” we obtain a measure of the equilibration times
and the sensitivity of the hysteresis to the size and
method used (constant pressure or constant temperature,
etc.). However, in order to obtain a sufficiently accurate
estimate of the nonequilibrium time behavior, it is neces-
sary to perform an ensemble averaging by repeating the
experiment many times, quenching from different instan-
taneous liquid and solid positions. This implies that the
investigation would be very time consuming computa-
tionally. Furthermore, while this kind of investigation
does not answer the question about the equilibrium
behavior of 2D material and whether this system exhibits
a hexatic phase, it does demonstrate the system’s sensi-
tivity to the size of the area and the ensemble in which
the nonequilibrium dynamics take place.

II. PROCEDURE AND RESULTS

The state points chosen were liquid (L), melting (M),
and two solids (S1,52), at pr2 =1.10, 1.14, and 1.18, and
1.25, respectively, at the isotherm kT /¢ =1.0 for a repul-
sive LJ potential (Weeks-Chandler-Andersen, WCA, po-
tential [6]), where r,, =2!/%0 is the distance at which the
LJ potential has its minimum energy € and k is the
Boltzmann constant. The points of state were chosen be-
cause they have already been studied for the microcanon-
ical ensemble [constants energy E, volume V, and number
of particles N or MD (EVN)], exhibiting the usual tie line
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of the first-order melting behavior [7]. All the systems
were started from a box with the usual V3/2 ratio be-
tween the edges. In the first group of simulations this ra-
tio was maintained at the quenching, while in the second
group it was broken into that of a more square shape.
The quenching was performed by an instantaneous re-
scaling of all the positions and the box to the new density.
The MD technique used to simulate the systems was the
updated version of the Nosé-Hoover (NH) method [8] for
the canonical [constant T and p, or MD (TVN)] and
isothermal-isobaric [constant T and p, or MD (7pN)] en-
sembles [9].

When the systems are quenched they change their
structure, measured by the change in S(k). As already
mentioned, we find the time behavior of the main peak in
S (k), corresponding to triangular ordering to be the most
sensitive measure of the nonequilibrium changes in the
system. In the following, we report the ensemble results
for the different quenchings.

Figure 1 shows the MD (TV¥N) results for the mean
value of the first peak of S(k,t), averaged over 20
quenched systems. As one can easily see, while the
quenching from S1 to M has a quite sluggish decay for
(S(k,t)), still unfinished by 25 000k, the quenching from
S1 to L produces a sharp decay in the structure factor to
an almost constant level after the first 5000h. The
behavior from L to S1 shows a continuous smooth in-
crease in the structure factor reflecting the building up of
the solid structure, while the quenching from L to M
seems not to affect the (S(k,t)) values. For comparison,
the last values at 25000h appearing in Fig. 1 are about
90, 55, 8, and 7, from top to bottom.

As only the quenchings from S1 to M and from S1to L
seem to follow a definite pattern of decay, we have fitted
those values with a best governing equation, finding that
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FIG. 1. Structure factor averaged over 20 MD (NVT)
configurations from the following quenchings: S1 to M (white
circles), S1 to L (black circles), L to M (white squares), and L to
S1 (asterisks).
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FIG. 2. Logarithmic behavior of the structure factor from S1
to L (black circles) and from S1 to M (white circles), over 20
MD (TVN) configurations.

the minimum value of the sum of the squares of the
differences § between the experimental and theoretical
values corresponds to a logarithmic law for melting
(§=0.48) and liquid (£=0.17). In the first case the
whole set of data up to 25000k was taken, while for the
second case only up to 2000A. This logarithmic behavior
permits one to obtain the relaxation time 7 of the system
from the inverse of the slope in a semilogarthmic plot
(Fig. 2), the results being 7=650h for the liquid and
7=15500h for the melting. The value of S(k,t= ) is
the structure factor for liquid and melting after a long
evolution of the system, when the value is fluctuating
around a fixed number. These values were 4.3 and 33 for
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FIG. 3. The same as Fig. 1, but for the pressures.
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the liquid and melting, respectively.

The pressures, with their standard deviations, during
the above quenchings are shown in Fig. 3. The 25 000# is
long enough for pressure stabilization, the first to stabi-
lize being the quenching from S1 to L (after =25004) and
the last from S1 to M (after =17 0004). The final results
are in agreement, within the statistical errors, with those
calculated previously for the same state points in Ref. [7].

As was seen in Fig. 1, for the quenching from S1 to M
there was still the same decay behavior after 25000k,
with too high a value for the structure factor. The sys-
tem was thus allowed to evolve over a longer time until
(S(k,t)) started to fluctuate around the same mean
value. Figure 4 shows this further behavior up to
250000h, now time averaging S (k) every 204 instead of
the instantaneous average peak in S (k,¢). It is easy to see
the stabilization process in S (k) which, after a sharp de-
cay, seems to fluctuate around a value that was con-
sidered to be S(k,t=o00)=33. The pressure remains al-
most constant with a final mean value p =12.57+0.04.

The value of S(k) at the “interfacial state” M should,
for systems reaching equilibrium, be the same whether
the systems are quenched from a liquid state or a solid
state. However, as can be seen from Figs. 1 and 3, the
two limit values are very different and show no sign of
approaching each other even for 2500004 (3 ns). The
difference is a consequence of the hysteresis in the (small)
2D system.

The final size effect on the equilibrium is easily demon-
strated by changing the shape of the box. A second
group of experiments was performed by forcing the tri-
angular shape of the box to change to a quasisquare form
by keeping the X length unaltered and scaling the Y
length only during the quenching from the higher densi-
ty. Figure 5 shows the results for the quenching from S2
to L (black triangles) and from S2 to M (white triangles)
with the MD (TVN) ensemble, and from S2 to M (black
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FIG. 4. Late pressure and structure factor behavior from S1
to M, over 20 MD (TVN) configurations.
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FIG. 5. Structure factor averaged over ten configurations for
the following quenchings: MD (TVN) from S2 to M (white tri-
angle), MD (TVN) from S2 to L (black triangles), and MD
(TpN) from S2 to M (black squares). All the quenchings were
performed by changing the triangular lattice shape of the box to
a more likely square shape.

squares) with the MD (7pN) ensemble. The external
pressure required as input for the last case was chosen to
be p.,=12.7, which is the late-time (using only the last,
more stable values) mean pressure obtained for the
quenching from S1 to M (see Fig. 3). The results are
quite different from those obtained in the first group of
experiments shown in Fig. 1. It is not possible now to
find any characteristic decay for the system, since
(S(k,t)) falls sharply in the first few hundred steps and
then starts to fluctuate with irregular, large amplitudes in
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FIG. 6. The same as Fig. 5, but for the pressures.
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FIG. 7. Late density, structure factor, and pressure behavior
from S2 to M over ten MD (TpN) configurations.

the melting zone. The mean late-time values for the
structure factor as shown in Fig. 5 were 50, 20, and 10,
from top to bottom. The pressures, Fig. 6, for the MD
(TVN) systems show a characteristic behavior similar to
their corresponding {S(k,t)) values in Fig. 5, while the
MD (TpN) system shows the constant imposed value of
12.7 from beginning to end. Again the final pressure
values coincide with those of Fig. 3 and Ref. [7].

Just as the system quenched from S1 to M in the MD
(TVN) ensemble, and with the V'3 /2 ratio between the
box edges, was allowed to evolve over a longer time, we
did the same with the S2 to M quenching in the MD
(TpN) ensemble with a quasisquare box shape. Figure 7
shows these results. While the behavior is similar to that
shown in Fig. 4, the value reached by the structure factor
is much smaller and very close to the value obtained for
the liquid, {(S(k,t=o))=4.3. The pressure remains
constant, as expected, and the final mean value for the
density was pr2 =1.138+0.003.

III. DISCUSSION AND CONCLUSIONS

First the quenching from different phases into the same
point of state (T,p) in the “interphase” M, shown in Fig.
1, should end up in the same state in the long run, but
this was not found to be the case. The 20 MD (TV¥N)
quenchings with a V3/2 ratio between the axes show,
from S1 to M, identical slow behavior with what appears
to be a bimodal exponential character, since at 250 0004
the initial exponential behavior has died away and the
mean of the 20 systems gives a slow decline to a final
value of (S(k,t))=30 (Fig. 4). In contrast, the L to M
quenching shows some variation from ensemble member
to ensemble member, but the sum is noticeably constant
and certainly does not reach the value of 30 under any
circumstances. The conclusion is that the systems have
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not reached equilibrium within 250 000 steps.

Second, for the ten MD (TVN) quenchings from S2 to
M (Fig. 5) scaling only in the Y direction, the early
behavior of the system looks the same as before, and the
bimodal character seems much more pronounced in this
set of quenchings. Nevertheless, and in spite of the initial
faster decay towards equilibrium, it is still not in agree-
ment with the L to M results. The conclusions are that
the shape of the boundaries affects the system strongly
and that the process is very slow, since the mean values
still have not settled down after 250 000 steps correspond-
ing to nanosecond times.

The above conclusions were drawn from the results of
simulations for N =1024 particles in a constant volume
V. However, if the melting is first order and associated
with a change in density, this (TVN) ensemble simulation
might not be suitable since it suppresses the density fluc-
tuations necessary for the growth of the subphases. This
will result in long equilibration times and strong hys-
teresis in the small MD system. A constant pressure MD
simulation therefore looks more appropriate. But even
though this system allows large density fluctuations, the
creation of subphases is a slow process and one cannot re-
scale the volume faster than the system can equilibrate it-
self [9,10]. So when we perform the MD (7TpN) quench-
ing from S2 to about pr2 =1.14 (Figs. 5 and 7), the struc-
ture factor value reached is the same as for the liquid and
the equilibrium time is relatively short. Thus the
quenched system relaxes to the system (liquid) that has
the fastest relaxation time and is therefore pushed into a
corner of the phase space, i.e., the liquid. The conclusion
is that constant p is not good at determining whether this
transition is first order.

In summary, we can state that nonequilibrium quench-
ing and ensemble averaging offer a self-consistent test of
how big a system should be and for how long it should be
followed in order to obtain its equilibrium properties.
The liquid-solid transition in 2D is a challenging problem
that has been fiercely debated for decades. Computer
simulations have played a crucial role in this debate.
Many of the simulation results, however, have been for
systems of the order of thousands of particles and the
nonequilibrium quenching test clearly demonstrates that
these systems are much too small to avoid the systems in
the transition region being locked into subareas of the
phase space. At present, it is beyond computer capability
to ensemble average substantially bigger systems and to
follow them in nanoseconds, but the strategy is clear: the
nonequilibrium systems, when quenched from liquid
states and solid states, should end in the same state, and
only when this quality is ensured can we trust the simula-
tion results.
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